

An Overview of the TNC Watershed Strategy & Great Lakes CEAP Project

Scott P. Sowa, Matthew Herbert, Layla Cole, Sagar Mysorekar, Tia Bowe, Lizhu Wang, A. Pouyan Nejadhashemi, Jon Bartholic, & Charles Rewa

WLEB CEAP WebEx May 16, 2012

Elements of Presentation

- Overview of TNC's Watershed Strategy
- Overview of Great Lakes CEAP Project and related elements of TNC Watershed Strategy
 - Foundations of our approach
 - Goal, general approach and core questions
 - Focal elements and important caveats
 - Approach
 - Results and Current Status
 - Future Directions

Agriculture has a major effect on the Conservancy's mission.

TNC's Traditional Approach in Agricultural Watersheds

How much?

Where will they have the most impact?

Can we get there by educating farmers and with Farm Bill incentives?

Questions to Answer to Improve Hydrologic Function, Water Quality, & Biota

How much, and Where?

- Determine relationships between BMP and environmental improvement (Dose-response curve)
- Define success and set environmental goals
- How to motivate at scale?
 - Create new reward for performance transactions to achieve the goals

Great Lakes Agriculture and Altered Hydrology Strategy

- Forecast the amount of BMPs needed.
- Develop, promote hydrological improvement practices.
- Develop, test new incentives and transactions.
- Prove ability to achieve scale at large watersheds.
- Leverage across Basin.

A New Twist on a Seasoned Approach

- Clean Water Act
 - Biological criteria
 - Water Quality Criteria
 - TMDL

Field-Based vs. GIS-Based Models and Goals

Field Based

• Requires <u>user</u> to collect data on predictor variables at site

of interest

- GIS-Based
 - Requires <u>modeler</u> to have spatially <u>comprehensive data</u>
 on all predictor variables across region of interest

Old Way Has Some Limitations

- Can't assess all waters from field samples
 - In Missouri we assessed0.03% of stream reaches

- Doesn't always assess if criteria (goals) are realistic
 - How Much will it Cost?

A Complimentary Approach

GIS-Based for spatially-comprehensive coverage

• SWAT-Based to forecast alternative future scenarios and associated costs

Core Questions

- How much of an investment will it take to achieve different levels of biological integrity?
- What is the cost per unit benefit?

Total Cost for Scenario

Cost per Unit Benefit

■ 25% Cost

■ 50%Cost

Great Lakes CEAP Project

 GOAL: provide decision makers with information and models on the relations between biological endpoints, water quality/flow, and conservation practices to help establish realistic desired conditions and guide strategic conservation

Realistic Expectations

- Goals that incorporate relevant ecological, logistical, legal, social, and economic realities that; a) determine what is valued by society, b) constrain what is achievable, or c) determine what is acceptable to society
- What are realistic goals for;
 - Rifle?
 - Shiawassee?
 - Cass?
 - Pigeon?

Specific Questions We Are Trying to Address

• Phase 1:

- What is the relationship between measures of biological integrity and water quality and flow variables?
- At what point do variables become limiting?
 - Target variables (Ag related water quality and flow)
 - Non target variables (Natural, Urban, etc.)
- Which streams are limited by Ag related WQ and flow?

Phase 2:

- How much of an investment will it take to remove water quality and flow as limiting factors?
- What are realistic, biologically-based, water quality and flow goals given:
 - direct and indirect costs of restoration?
 - return on investment?
 - limited public funding or other "funding mechanisms"?
 - logistical constraints of existing AG BMP supply chains?

Important Caveats and Cautions

- Out of necessity we are focusing on specific:
 - Source of Disturbance; AG non-point source
 - We do account for other sources(e.g., urban, cattle, dams)
 - Ecosystem: Rivers
 - Biological endpoints: Fish
 - Elements of habitat quality: Sediments, Nutrients, and Flow
 - Conservation practices: 12 AG BMPs
- Our realistic desired conditions and strategies might be insufficient for addressing other issues;
 - E.g., Nearshore ecosystem health/algal blooms

Important Caveats Cont.

- Water quality and flow are not the only factors that influence biological integrity of streams
- We are addressing only a subset of factors:
 - Be Honest and Transparent
- We are trying to determine at what point are water quality and flow no longer limiting the riverine fish community

Selected BMPs

- Nutrient Management/ Waste Utilization
- Conservation Crop Rotation
- Filter Strip
- Conservation Cover
- Residue and Tillage Management
- No-Till/Strip Till/Direct Seed
- Mulch Till, Residue Management
- Residue Management, No-Till/Strip Till
- Cover Crop
- Pasture and Hay Planting
- Wetland Creation/Restoration
- Wetland Floodplain restoration

Project Areas

Phase 1

Phase 2

Great Lakes CEAP Phase 1: Major Tasks

- Model Water Quality and Flow across study area via SWAT
 - Historic (for context) and current land use/cover conditions
- Identify relations and thresholds/ceilings between:
 - Response variables:
 - Fish community Index of Biotic Integrity
 - % of Community Comprised of Intolerant

Predictor Variables:

- Natural Watershed Variables (e.g., groundwater contribution)
- Non-target disturbances (e.g., %urban)
- Target predictor variables
 - Water quality and flow variables from <u>SWAT</u>

Response Variables and Sources

- Response variables (N = 1022 or N = 345)
 - Fish Index of Biotic Integrity (IBI)

$$N = 345$$

- Relative Abundance of Functional Guilds
 - » Ominvore, Insectivore,Piscivore, Lithophilus, Intolerant

	A	В	С	D	Е	F	G	Н	
1	PUGAP_CODE	IBI	PCINTONB	PCOMNINB	PCINSENB	PCLITHNB	PCPISVNB	PISINSRATIO	
2	black596	35.00	3.29	30.21	43.75	34.89	0.00	0.00	
3	clint100	57.00	11.59	33.33	43.32	53.30	0.97	0.02	
4	clint103	34.50	1.22	22.43	76.76	29.83	0.00	0.00	
5	clint108	53.00	22.27	19.09	51.59	50.00	0.23	0.00	
6	clint116	35.00	1.40	0.00	20.98	12.59	0.00	0.00	
7	clint206	32.00	1.38	13.17	3.82	69.69	0.33	0.09	
8	clint224	12.00	0.00	29.58	2.82	45.07	0.70	0.25	
9	clint237	49.00	2.39	18.97	49.91	20.63	0.00	0.00	
10	clint244	19.00	0.00	26.46	4.79	44.55	1.20	0.25	
11	clint249	47.00	26.69	1.40	42.98	35.39	0.28	0.01	
12	dint254	87.00	17.42	0.00	84.85	7.58	13.64	0.16	
13	clint29	57.00	64.86	8.78	8.78	18.92	0.00	0.00	
14	dint299	58.33	18.19	10.08	18.93	33.82	0.00	0.00	
15	dint306	47.00	3.28	24.59	11.48	28.96	0.55	0.05	
16	clint308	42.33	20.08	15.53	22.63	52.46	0.06	0.00	
17	dint355	35.00	0.00	2.25	1.13	23.10	0.85	0.75	
18	dint362	59.00	31.92	14.81	35.48	29.07	0.75	0.02	
19	clint365	49.00	2.51	58.19	13.38	60.37	2.17	0.16	
20	dint393	34.00	8.17	26.14	13.40	56.21	0.33	0.02	
21	clint441	37.00	1.90	18.25	6.46	25.10	0.38	0.06	
H 4 + 9 fsmetric *)									
Ready Count 9 III 130% -									

Target Predictor Variables

- Modeled (SWAT) Variables (N = 345)
 - Sediments, Nutrients, and Flow
 - » Current, Historic, % change, gross difference
 - » Annual and Seasonal Min, Max, and Means
 - » Runoff, Concentrations and Loads

Other Predictor Variables

- -Predictor Variables (N = 1022)
 - Stream size, Drainage Area, Gradient
 - Physiography and Land Cover
 - Non-Target Threats (e.g., %urban)
- Spatial Units
 - Watershed, overall riparian, local catchment, local riparian
- Sources
 - NFHAP Assessment
 - Great Lakes Aquatic GAP

Identify Thresholds and Relations

- Response Variables
 - IBI and Percent Intolerant Fish

- Predictor Variables
 - Target: (N of 345)
 - SWAT Water Quality and Flow
 - Non-Target: (N of 1022)
 - Watershed Disturbances
 - Natural: (N of 1022)
 - Watershed hydrology/physiography

Identify Thresholds and Relations Deciphering Wedge Plots/Envelopes

- —At what point are water quality and flow variables no longer limiting?
- Other factors often limiting
 - Local physical habitat
 - Sediment, woody debris
 - Contaminants
 - Barriers, Invasive species

Non-Target Disturbance Limit: IBI and Percent Impervious

Target Disturbance Limit: IBI and Spring Rising Organic P Concentration

Target Disturbance Limit: %Intolerant and Spring Falling Organic P Concentration

Integrated Mapping of Ecological Limits

	A	В	С	D	E	F	G	Н
1	New_UnqID	IBI_pre_001	CAPIBI_SURQmm	CAPIBI_Spr1_ORGP_OUTConc	CAPIBI_LogSum_SEDCONCmg/kg	CAPIBI_Sum_TOTALP_OUTConc	IBICap_AWT_QG3P	IBICap_LogPONDWA
2	040301-040400_1_doorp600_13063073_20551	51.628571	100	100	100	100	100	100
3	040301-040400 1 doorp600 13063835 20552	51.628571	100	100	100	100	100	100
4	040301-040400_10_pendk390_6801354_20659	51.628571	100	100	95.08013793	100	100	100
5	040301-040400_10_pendk390_6801358_20661	51.628571	100	100	95.08013793	100	100	100
6	040301-040400_10_pendk390_6801368_20660	51.628571	100	100	95.08013793	100	100	100
7	040301-040400_10_pendk391_6801354_20662	51.628571	100	100	95.08013793	100	100	100
8	040301-040400_10_pendk391_6801358_20663	51.628571	100	100	95.08013793	100	100	100
9	040301-040400_10_pendk399_6801368_20664	51.628571	100	100	95.08013793	100	100	100
10	040301-040400_10_pendk399_6802086_20665	51.628571	100	100	95.08013793	100	100	100
11	040301-040400_10_pendk438_6802086_20666	51.628571	100	100	95.08013793	100	100	100
12	040301-040400_10_pendk471_6801388_20667	51.628571	100	100	95.08013793	100	100	100
13	040301-040400_10_pendk471_6802086_20668	51.628571	100	100	95.08013793	100	100	100
14	040301-040400_100_shman1201_12175494_15979	51.628571	74.6796077	100	100	100	100	100
15	040301-040400_100_shman1218_12175494_15982	51.628571	74.6796077	100	100	100	100	100
16	040301-040400_100_shman1218_12175510_15981	51.628571	74.6796077	100	100	100	100	100
17	040301-040400_100_shman1218_12175512_15980	51.628571	74.6796077	100	100	100	100	100
18	040301-040400_100_shman1224_12175504_15987	51.628571	74.6796077	100	100	100	100	100
19	040301-040400_100_shman1224_12175506_15983	51.628571	74.6796077	100	100	100	100	100
20	040301-040400_100_shman1224_12175512_15984	51.628571	74.6796077	100	100	100	100	100
21	040301-040400_100_shman1224_12175522_15986	51.628571	74.6796077	100	100	100	100	100
22	040301-040400_100_shman1224_12175536_15985	51.628571	74.6796077	100	100	100	100	100
23	040301-040400_100_shman1242_12175536_15988	51.628571	74.6796077	100	100	100	100	100
24	040301-040400_100_shman1259_12175536_15989	51.628571	74.6796077	100	100	100	100	100
25	040301-040400_100_shman1259_12175870_15990	51.628571	74.6796077	100	100	100	100	100
26	040301-040400_100_shman1271_12175548_15992	51.628571	74.6796077	100	100	100	100	100
27	040301-040400_100_shman1271_12175548_15993	51.628571	74.6796077	100	100	100	100	100
28	040301-040400_100_shman1271_12175870_15991	51.628571	74.6796077	100	100	100	100	100
29	040301-040400_100_shman1278_12175548_15994	51.628571	74.6796077	100	100	100	100	100
30	040301-040400_100_shman1278_12175548_15996	51.628571	74.6796077	100	100	100	100	100
	040301-040400_100_shman1278_12175552_15995	51.628571	74.6796077	100	100	100	100	100
32	040301-040400_100_shman1278_12175558_15997	51.628571	74.6796077	100	100	100	100	100
33	040301-040400_100_shman1282_12175558_15998	51.628571	74.6796077	100	100	100	100	100
	040301-040400_100_shman1298_12175568_16001	51.628571	74.6796077	100	100	100	100	100
	040301-040400_100_shman1298_12175568_16002	51.628571	74.6796077	100			100	100
200	A40004 A40400 400 1 1000 40475570 45000	54 500574	- AND THE PARTY NAMED IN	***		400	***	***

Deciphering Integrated Data

- Which variables are limiting IBI?
- Where are target variables limiting?

Deciphering Integrated Data

IBI

Deciphering Integrated Data | B |

- Where are target variables limiting IBI?
- How much can we improve conditions?

Great Lakes CEAP Phase 2 Tasks

- Within 4 Subwatersheds of Saginaw Bay
 - Use SWAT to model changes in flow and water quality (and fish communities) under different scenarios
 - Current, Medium (25%), High (50%), Historic
 - Assess costs and benefits for each scenario
 - Select priority subwatershed(s)
 - Level 1 priorities
 - Work with key partners to develop:
 - Realistic subbasin goals
 - Subbasin priorities
 - Level 2 priorities

Predicted Water Quality Under Different Scenarios

Phase 2: Preliminary Results

Total Cost for Scenario

Cost per Unit Benefit

Incorporating Climate Change

- Three Scenarios focused on Precipitation
- Bad for streams, good for embayments?

Watershed	Scenario	ORGP	ORGP	Sed	Sed	NH4	NH4
		(Load)	(Conc)	(Load)	(Conc)	(Load)	(Conc)
	Dry-Dry No BMP	-44.2%	22.3%	-57.8%	-8.9%	-34.4%	43.5%
Cass	Wet-Dry No BMP	-14.9%	20.6%	-31.2%	-4.5%	-4.4%	35.4%
	Wet-Wet No BMP	1.5%	8.7%	-6.8%	-0.9%	13.1%	21.1%
	Dry-Dry No BMP	-44.7%	13.5%	-55.4%	-10.3%	-34.1%	35.3%
Shiawassee	Wet-Dry No BMP	-15.7%	14.2%	-28.6%	-5.8%	-4.9%	28.9%
	Wet-Wet No BMP	1.7%	3.3%	-2.7%	-2.3%	14.9%	16.7%
	Dry-Dry No BMP	-21.0%	7.2%	-15.9%	0.5%	3.7%	40.7%
Rifle	Wet-Dry No BMP	11.2%	11.7%	27.8%	9.6%	28.8%	29.4%
	Wet-Wet No BMP	14.6%	1.6%	26.6%	8.3%	41.0%	25.0%
Diggon/	Dry-Dry No BMP	-35.5%	-1.5%	-42.6%	-6.5%	-21.9%	19.2%
Pigeon/	Wet-Dry No BMP	-9.5%	-2.7%	-3.8%	3.9%	6.7%	14.7%
Pinnebog	Wet-Wet No BMP	5.6%	-11.6%	25.5%	11.8%	21.0%	1.3%

TNC Watershed Strategy Phase 3 Tasks

Develop field scale data and decision tools to support supply chain logistics and Level 3 priorities:

- Prioritize at 10-30 m pixel to field scale
 - Reduced erosion and sediment inputs (HIT, L-THIA)
 - Reduced nutrient loss (L-THIA)
 - Reduced surface runoff and increased groundwater recharge (SWAT)
- Facilitate strategic placement of conservation practices (cost/benefit) to more efficiently meet ecological goals
- Support Transactions
- Track cumulative placement of conservation practices and progress toward ecological goals

Level 3 Priorities

- ~25-35% increased efficiencies for top 5%
- Legge et al. In Press. Journal of Soil and Water Conservation

Summary

- Fish communities are influenced by WQ and flow
- AG related WQ and flow alterations appear to be limiting fish communities across about 35% of the project area
- What is the limiting factor is highly variable across space
- Can isolate where AG related disturbances associated with WQ and Flow are limiting
- Percent Intolerant fish is a more sensitive metric
- In most instances it appears that we can improve water quality to the point it is no longer limiting riverine fish communities (Does not mean fish community is healthy)
- Possibly a very different story when looking at Lakes

Improving the Approach

- Use multiple taxonomic groups as biological endpoints
- Fill other critical data gaps for predictors (more threat non-target threats)
- Further downscaling SWAT model to minimize loss of biological data
- Incorporate spatially distributed calibration into SWAT model calibration process
 - Use discrete water quality data and maybe SPARROW
- Incorporate better current land use and management data into SWAT model (NASS Survey)
- Incorporate climate change into SWAT model

Acknowledgments

- USDA NRCS CEAP, Mott Foundation, Herrick
 Foundation, and Americana Foundation for funding
- Coauthors and collaborators
- Jana Stewart (USGS) for GL Aquatic GAP Data
- Dana Infante, Arthur Cooper, Pete Esselman, Gary
 Whelan and Doug Beard for NFHAP Condition

